Arranging thousands of wind turbines across many miles of land requires new tools that can balance cost and efficiency to provide the most energy for the buck.
Charles Meneveau, who studies fluid dynamics at Johns Hopkins University, and his collaborator Johan Meyers from Leuven University in Belgium, have developed a model to calculate the optimal spacing of turbines for the very large wind farms of the future. They will present their work at the American Physical Society Division of Fluid Dynamics (DFD) meeting in Long Beach, CA.
"The optimal spacing between individual wind turbines is actually a little farther apart than what people use these days," said Meneveau.
The blades of a turbine distort wind, creating eddies of turbulence that can affect other wind turbines farther downwind. Most previous studies have used computer models to calculate the wake effect of one individual turbine on another.
Starting with large-scale computer simulations and small-scale experiments in a wind tunnel, Meneveau's model considers the cumulative effects of hundreds or thousands of turbines interacting with the atmosphere.
(WindDaily)
Read more