Heating and squishing microalgae in a pressure-cooker can fast-forward the crude-oil-making process from millennia to minutes.
University of Michigan professors are working to understand and improve this procedure in an effort to speed up development of affordable biofuels that could replace fossil fuels and power today's engines.
They are also examining the possibility of other new fuel sources such as E. coli bacteria that would feed on waste products from previous bio-oil batches.
"The vision is that nothing would leave the refinery except oil. Everything would get reused. That's one of the things that makes this project novel. It's an integrated process. We're combining hydrothermal, catalytic and biological approaches," said Phillip Savage, an Arthur F. Thurnau Professor in the U-M Department of Chemical Engineering and principal investigator on the $2-million National Science Foundation grant that supports this project. The grant is funded under the American Recovery and Reinvestment Act.
"This research could play a major role in the nation's transition toward energy independence and reduced carbon dioxide emissions from the energy sector," Savage said.
Microalgae are microscopic species of algae: simple, floating plants that don't have leaves, roots or stems. They break down more easily than other potential biofuel source plants because they don't have tough cell walls, Savage said.
Unlike fossil fuels, algae-based biofuels are carbon-neutral. The algae feed on carbon dioxide in the air, and this gets released when the biofuel is burned. Fossil fuel combustion puffs additional carbon into the air without ever taking any back.
(ScienceDaily)
Read more
youris.com provides its content to all media free of charge. We would appreciate if you could acknowledge youris.com as the source of the content.