Esegui ricerca
24 May 2010

Schooling Fish Offer New Ideas for Wind Farming

Aumenta dimensioni testoDiminuisci dimensioni testo
The quest to derive energy from wind may soon be getting some help from California Institute of Technology (Caltech) fluid-dynamics expert John Dabiri -- and a school of fish

As head of Caltech's Biological Propulsion Laboratory, Dabiri studies water- and wind-energy concepts that share the theme of bioinspiration: that is, identifying energy-related processes in biological systems that may provide insight into new approaches to -- in this case -- wind energy.

"I became inspired by observations of schooling fish, and the suggestion that there is constructive hydrodynamic interference between the wakes of neighboring fish," says Dabiri, associate professor of aeronautics and bioengineering at Caltech. "It turns out that many of the same physical principles can be applied to the interaction of vertical-axis wind turbines."

The biggest challenge with current wind farms is lack of space. The horizontal-axis wind turbines most commonly seen -- those with large propellers -- require a substantial amount of land to perform properly. "Propeller-style wind turbines suffer in performance as they come in proximity to one another," says Dabiri.

In the Los Angeles basin, the challenge of finding suitable space for such large wind farms has prevented further progress in the use of wind energy. But with help from the principles supplied by schooling fish, and the use of vertical-axis turbines, that may change.

Vertical turbines -- which are relatively new additions to the wind-energy landscape -- have no propellers; instead, they use a vertical rotor. Because of this, the devices can be placed on smaller plots of land in a denser pattern. Caltech graduate students Robert Whittlesey and Sebastian Liska researched the use of vertical-axis turbines on small plots during a class research project supervised by Dabiri. Their results suggest that there may be substantial benefits to placing vertical-axis turbines in a strategic array, and that some configurations may allow the turbines to work more efficiently as a result of their relationship to others around them -- a concept first triggered by examining schools of fish.

(Science Daily)

Read more provides its content to all media free of charge. We would appreciate if you could acknowledge as the source of the content.